New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge

نویسندگان

  • Lamei Li
  • Hong Zhang
  • Qing Huang
چکیده

We report the new insight into the dielectric barrier discharge (DBD) induced inactivation of Microcystis aeruginosa, the dominant algae which caused harmful cyanobacterial blooms in many developing countries. In contrast with the previous work, we employed flow cytometry to examine the algal cells, so that we could assess the dead and living cells with more accuracy, and distinguish an intermediate state of algal cells which were verified as apoptotic. Our results showed that the numbers of both dead and apoptotic cells increased with DBD treatment delay time, and hydrogen peroxide produced by DBD was the main reason for the time-delayed inactivation effect. However, apart from the influence of hydrogen peroxide, the DBD-induced initial injures on the algal cells during the discharge period also played a considerable role in the inactivation of the DBD treated cells, as indicated by the measurement of intracellular reactive oxygen species (ROS) inside the algal cells. We therefore propose an effective approach to utilization of non-thermal plasma technique that makes good use of the residual inactivation effect to optimize the experimental conditions in terms of discharge time and delay time, so that more efficient treatment of cyanobacterial blooms can be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Decontamination by Dielectric Barrier Discharge Plasma

Background: Dielectric barrier discharge (DBD), a source of non-thermal plasma, is used in surface decontamination. Objective: To study the effect of DBD plasma treatment, we evaluated the effect of plasma exposure time on inactivation of Bacillus subtilis. Results: Applying the DBD plasma to the culture of B. subtilis caused complete sterilization of the surface without any thermal effects. In...

متن کامل

Assessment of anti-bacterial activity of non-thermal plasma in sterilization of infectious wastes

In today's world, the production of hospital wastes and their adverse effects such as infectious outbreaks and resistance to treatment is an important issue. Therefore, it's vital to find a new and efficient method to manage such wastes. In this study, the ability of dielectric barrier discharge (DBD) plasma to deactivate Pseudomonas aeruginosa and Staphylococcus aureus bacter...

متن کامل

پالایش بخارات کلروفرم با استفاده از راکتور پلاسمای غیر حرارتی جدید (سال 1394)

Background and aims: One of the innovative technologies for air pollution control is non-thermal plasma. The dielectric barrier discharge reactor is one of the reactors that applied in non thermal plasma technology for air polluation control. In dielectric barrier discharge reactor, the distance between the electrodes for electric discharge is low and led to increasing space velocity of the pol...

متن کامل

A Numerical Study of the Sour Gas Reforming in a Dielectric Barrier Discharge Reactor

In this paper, using a one-dimensional simulation model, the reforming process of sour gas, i.e. CH4, CO2, and H2S, to the various charged particles and syngas in a dielectric barrier discharge (DBD) reactor is studied. An electric field is applied across the reactor radius, and thus a non-thermal plasma discharge is formed within the reactor. Based on the space...

متن کامل

Synergetic Effects of Plasma, Temperature and Diluant on Nonoxidative Conversion of Methane to C2+ Hydrocarbons in a Dielectric Barrier Discharge Reactor

Noncatalytic and nonoxidative conversion of methane in a dielectric barrier discharge (DBD) reactor is examined at different temperatures, gas residence times and input powers. In addition, the ratio of methane to helium as a diluant, is changed in the range of 0.6 to 1.8. Results show significant synergetic effects of plasma, temperature and helium on the methane conversion and C2+</s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015